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ABSTRACT: Predicting the binding affinity between small molecules and target
macromolecules while combining both speed and accuracy is a cornerstone of
modern computational drug discovery, which is critical for accelerating therapeutic
development. Despite recent progress in molecular dynamics (MD) simulations, such
as advanced polarizable force fields and enhanced sampling techniques, estimating
absolute binding free energies (ABFEs) remains computationally challenging. To
overcome these difficulties, we introduce a highly efficient hybrid methodology that
couples the Lambda-adaptive biasing force (Lambda-ABF) scheme with on-the-fly
probability enhanced sampling (OPES). This approach achieves up to a 9-fold
improvement in sampling efficiency and computational speed compared to the
original Lambda-ABF when used in conjunction with the AMOEBA polarizable force
field, yielding converged results at a fraction of the cost of standard techniques.

Accurately predicting the binding affinity between a small
molecule (ligand) and its target (protein or RNA/DNA)

is a fundamental tool in modern computational drug discovery
that can be used at both the hit discovery and the lead
optimization stages.1 Indeed, it minimizes the cost of drug
discovery by reducing the need to rely on experimental assays.
Recent advancements in molecular simulation, especially

molecular dynamics (MD), have greatly enhanced our ability
to predict binding affinities. One of the most complex
challenges in this area is the prediction of absolute binding
free energies (ABFEs),2 which depends on two key factors:
reliable force fields (FFs) and efficient sampling.3−5 Force
fields must accurately capture complex and subtle molecular
interactions, such as electrostatic (ELE), van der Waals
(VDW), and solvation effects, while also accounting for factors
such as protonation state variations and conformational
flexibility. Efficient sampling is also essential to exploring the
vast configurational space of ligand−protein interactions and is
often limited by complex free energy barriers.
In this context, the development of high-quality polarizable

force fields,6−8 such as AMOEBA,9−12 and tools, like
Poltype,13 for accurately parametrizing complex ligands, have
significantly enhanced the accuracy of MD simulations.14−19

These progresses allow for more accurate modeling of ligand−
protein interactions and a more reliable prediction of
associated thermodynamic properties, such as the binding
affinity.19

Still, MD simulations encounter sampling limitations,
especially in biological systems, such as ligand−protein
complexes. Indeed, the exploration of the conformational

space is often hindered by significant free-energy barriers,
associated with time scales beyond the reach of unbiased MD
simulations, making it challenging to sample all relevant states
exhaustively in standard simulations.
To address these challenges, several enhanced sampling

algorithms have been developed. Notably, collective variable
(CV)-based importance sampling techniques, such as umbrella
sampling (US),20 adaptive biasing force (ABF),21−23 Metady-
namics (MtD),24,25 its recent evolution, on-the-fly probability
enhanced sampling (OPES),26,27 and temperature-accelerated
molecular dynamics (TAMD),28 have demonstrated significant
success. These algorithms rely on the definition of CVs,
reduced dimensions along which biasing forces, potentials, or
probabilities are applied to facilitate sampling of the system’s
configuration space. Each enhanced sampling method has its
advantages and limitations.4 To overcome these challenges,
hybrid methods have been developed to combine different
techniques and mitigate their individual limitations.29

Another class of methods, called alchemical approaches,
estimates free energy differences associated with unphysical
“alchemical” changes of the molecular Hamiltonian30 by
scaling some key interactions with an alchemical parameter λ
∈ [0, 1]. They have proven to be useful to compute solvation
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as well as binding free energies. Traditional techniques involve
several simulations at fixed λ values and the reconstruction of
the free energy difference of interest through an estimator,
such as the free energy perturbation (FEP)31 or the
thermodynamic integration (TI)32 estimator.
Alternatively, another approach called Lambda-dynamics33

was introduced, in which the coupling parameter λ is treated as
a dynamical variable through an extended Lagrangian/
Hamiltonian scheme. Building upon this concept, we
introduced a new alchemical method, Lambda-adaptive biasing
force (Lambda-ABF),34 that leverages lambda dynamics in
combination with multiple-walker ABF,35 enabling efficient
sampling of λ as a CV. It has been shown to be robust and to
improve sampling efficiency compared to standard fixed-
lambda methods.34 Additionally, in the context of binding
simulations, it leverages distance-to-bound configuration
(DBC)36 restraints to keep the ligand within the binding
pocket, limiting its translational, rotational, and conformational
fluctuations. Compared to fixed-lambda methods, Lambda-
ABF not only reduces the computational cost but is also
arguably simpler as it bypasses the definition of a λ schedule
and portable thanks to its implementation within the Colvars
library.37,38

ABF applies biasing forces along the transition coordinate to
flatten the sampled free-energy landscape toward a uniform
distribution. It is well-understood mathematically23 and is
associated with a local (unconstrained) TI free-energy
estimator. A key limitation arises with barriers along other
degrees of freedom that can lead to kinetic trapping in some
regions and overall non-ergodic sampling, as well as in the
diffusive regime when (local) convergence is reached.
To overcome this limitation, we combine Lambda-ABF with

the exploratory version of the OPES method, known as OPES-
Explore27 (OPESe). This method is CV-based and aims at
sampling a target probability distribution associated with lower
barriers. It can be seen as an evolution of well-tempered
(wt)MtD with an emphasis on exploration and is user-friendly,
as it requires only a few physically motivated parameters to be
set. By applying a bias to the Lambda CV within the Lambda-
ABF-OPES method, we effectively integrate the strengths of
both ABF and OPESe.
Similar to the (wt)MtD-eABF method,29 the Lambda-ABF-

OPES approach benefits from the combination of ABF and
OPESe. While ABF reduces the free energy barriers, OPESe fills
the energy valleys by incorporating a history-dependent
potential term. To the best of our knowledge, this is the first
instance of combining ABF with the OPESe method in an
alchemical framework. This approach improves convergence
speed, enhancing it by up to 9 times compared to the original
Lambda-ABF method.
We applied this hybrid approach, utilizing the AMOEBA

polarizable force field and DBC restraints, to calculate the
absolute binding free energy of 11 diverse small drug-like
molecule inhibitors binding to bromodomains (BRD4) as well
as the Benzamidine−Trypsin complex, a well-studied macro-
molecular systems.39−43 Our results show that while
maintaining high accuracy, with a mean absolute error of
0.90 kcal/mol for the BRD4 system, we achieved a significant
improvement in convergence speed. For the Benzamidine−
Trypsin complex, we also obtained very close agreement with
the experimental value, with a notably low computational cost
compared to, for example, the results of ref 43. This represents

a notable advancement, particularly when using the more
computationally demanding AMOEBA polarizable force field.
The close agreement between our computational predictions

and experimental data demonstrates the robustness of our
hybrid method, offering a promising approach to computa-
tional drug design.
DBC Restraint: In alchemical methods, absolute binding

free energy calculations critically depend on a precise definition
of the bound state and well-designed ligand restraints (both
translational and, optionally, orientational) to ensure rapid
convergence. In this study, we employed the DBC coordinate
to restrain the ligand during Lambda-ABF-OPES simulations.
It is defined as the root-mean-square deviation (RMSD) of
some ligand atoms (LAs) for each frame, with the alignment
performed relative to some atoms of the receptor’s binding
(RB) site.36 This approach captures positional, orientational,
and also conformational deviations of the ligand in a single
collective variable.
In the case of BRD4 complexes, to select the LAs, we

monitored the root-mean-square fluctuation (RMSF) of the
ligand’s heavy atoms over at least 100 ns of standard MD
simulations. Further details on the simulation setup can be
found in the Supporting Information. Atoms with a RMSF of
less than 0.6 Å were selected for tight binders (ligands 1−9),
while those with a RMSF between 0.7 and 0.8 Å were chosen
for weak binders (ligands 10 and 11). For the Benzamidine−
Trypsin complex, due to the small size of the ligand, all heavy
atoms of the ligand were selected for the DBC.
For the RB selection of BRD4 and Trypsin, we used the Cα

atoms of the protein within 6 Å of the ligand with a RMSF
below approximately 0.6 Å. See Figure S1 of the Supporting
Information for the definition of DBC for the protein and each
ligand. During plain MD of each ligand, the DBC was
monitored using the Colvars library, and the DBC value within
the 95% interval of the distribution was selected as the DBC
cutoff for the restraint in Lambda-ABF-OPES. This selection
ensures that, during the alchemical simulation, there is no
biased artifact from the DBC restraint. The DBC cutoff for
each ligand is listed in Table S1 of the Supporting Information.
A flat-bottom harmonic restraint was then applied to the DBC
with a force constant of 100 kcal mol−1Å−2 above the DBC
cutoff.
Lambda-ABF-OPES for Calculation of Absolute Binding

Free Energies: Details of the Lambda-ABF and OPESe
methods can be found in the original publications.26,27,34

Here, we provide a brief overview of the underlying theories.
The Lambda-ABF algorithm21,22,34 adaptively computes the

derivative of the free energy associated with parameter λ using
the thermodynamic integration (TI) formula.44 This estimate
is applied as a force directly to the simulated system, guiding
the dynamics. As a result, the sampling of λ converges toward a
uniform distribution, facilitating the crossing of free-energy
barriers.
OPESe,

27 a CV-based enhanced sampling technique,
represents the latest advancement in the MtD family. It
broadens the sampling of a system toward a target probability
distribution known as the well-tempered distribution. This
approach employs Gaussian kernels to adaptively construct a
bias potential, guiding the system’s exploration while
preserving thermodynamic relevance. Critical parameters,
such as the Gaussian kernel width and bias factor, are pivotal
in defining the sampling’s scope and stability. Additionally, the

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.5c00683
J. Phys. Chem. Lett. 2025, 16, 4626−4634

4627

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.5c00683/suppl_file/jz5c00683_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.5c00683/suppl_file/jz5c00683_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.5c00683/suppl_file/jz5c00683_si_001.pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.5c00683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


barrier parameter (ΔE) ensures efficient transitions between
basins while preventing access to irrelevant high-energy states.
In this study, the ABFE is calculated by continuously

“alchemically” decoupling the ligand from its environment,
both in complex with the protein and separately in the bulk
solvent. The standard free energy of binding is then
determined using a thermodynamic cycle,45 which requires
sampling of the alchemical Hamiltonians. We employed the
Lambda-ABF approach as implemented in Tinker-HP/Colvars,
in combination with OPESe provided by the Colvars library,37

version 2024−11−18. This integration provides user-friendly
convergence estimation without requiring post-processing and
allows seamless compatibility with other CV-based methods.
All simulations were performed at T = 300 K and P = 1 atm

using the BAOAB-RESPA integrator46 with a 3 fs time step
under the NPT ensemble, employing four walkers47 to
separately decouple the van der Waals (VDW) and electro-

static (ELE) interactions. More precisely, the polarizabilities
and permanent multipoles of the ligand are scaled down to 0 in
the ELEleg-, and the VDW interactions between the atoms of
the ligand and all of the other atoms are scaled down to 0 using
softcore interactions-.48 In the complex phase, 30 ns was
simulated for the VDW leg and 5 ns was simulated for the ELE
leg. In the solvent phase, both the VDW and ELE legs were
simulated for 5 ns each.
As mentioned earlier, for OPESe, the barrier parameter is a

critical setting in the simulations and must be sufficient to
ensure that the method accurately captures the energy
landscape and transition state barriers. We conducted tests
using OPESe alone with different barriers. The final ΔG values
varied between runs (see Figure S23 of the Supporting
Information), indicating that OPESe alone struggles to
compute the binding free energies of interest. However, in
combination of OPESe with Lambda-ABF, the system is

Figure 1. Structural representation of the BRD4−ligand and Benzamidine−Trypsin complexes. (a) Cartoon representation of the BRD4
bromodomain structure in complex with ligand 1 (PDB ID 4OGJ), with the BC loop highlighted using a dashed marker. (b) Binding mode of
BRD4 with the ligand, highlighting key interacting residues Asn140 and Tyr97 in cyan. Crystallographically observed water molecules are shown as
ball-and-stick representations, along with the hydrogen-bond network bridging the ligand and protein via Tyr97 and Gln85. The protein is
represented as a transparent cartoon. (c) 2D structures of the compounds analyzed in this study, labeled with Arabic numerals in descending order
of binding affinity. (d) Cartoon representation of the Trypsin structure in complex with Benzamidine (PDB ID 3ATL). The 2D structure of
Benzamidine is also shown in the bottom-right corner of panel d.
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primarily driven by Lambda-ABF, which facilitates the crossing
of energy barriers and also benefits from the rapid convergence
of the TI estimator (see Figure S20 of the Supporting
Information). In this case, OPESe mainly serves to push the
system out of the local minima. Therefore, the barrier
parameter does not need to be equal to the free energy
differences associated with the simulation. Our tests showed
that setting the bias threshold of OPESe to a maximum of 5
kcal/mol for both the ELE and VDW legs in the complex and
solvent phases effectively accelerated the convergence across all
ligands in the BRD4 and Trypsin systems, regardless of their
respective energy barriers. For ligand 11 in complex with
BRD4, a threshold of 2 kcal/mol was sufficient for the proper
acceleration. Although a barrier of 5 kcal/mol also works well,
because this ligand is a weak binder, the lower threshold of 2
kcal/mol ensures better stability in convergence. An adaptive
sigma is used to determine the Gaussian kernel width, and the
frequency for kernel deposition was set to 300 steps, with a
time step of 3 fs.
The free energy cost associated with the release of the DBC

restraint is computed in the gas phase through TI by
progressively releasing it to a compatible harmonic distance
restraint, which can then be computed analytically.34,36,45

In the BRD4 simulations, we observed that the rotamers of
Asn140 in the Apo state may adopt a conformation favorable
in the Apo state but not in the Holo state (see the Supporting
Information for more details). This could lead to sampling the
Holo state with an incorrect orientation of Asn140, potentially
introducing artifacts. The restriction (through a restraint) to
one of these rotamers as an Apo end point must be taken into
account. Therefore, a positional restraint was applied to the
heavy atoms of the Asn140 residue and its neighboring atoms
(all heavy atoms of the backbone and those within 6 Å of the
ligand with a mild force constant of 2 kcal mol−1Å−2). This
restraint was necessary to ensure that Asn140 and its
neighboring atoms were properly sampled in both the Apo
and Holo states, given the continuous switching of the lambda
between 0 (Apo) and 1 (Holo) in the Lambda-ABF-OPES
simulations. Because both rotamers of Asn140 are equally
favorable in the Apo state (see Figure 2), a RT ln(2) correction
was added to the final computed ΔG. In addition, to avoid
artifacts during alchemical decoupling, as described in the
Supporting Information, the Cα atoms of BRD4 were
restrained to their relaxed configuration.
Analytical Lambda Derivatives for Variational Many-Body

Potentials: As with all TI-based techniques, Lambda-ABF
requires the computation of potential derivatives with respect
to the alchemical parameter λ, which are not trivial to compute
for many-body interactions, such as polarization, as present in
the AMOEBA force field. In our previous work,34 we used a
simple interpolation of polarization between the end states,
which gives immediately the associated derivatives as the
difference of these, but this is associated with an increase of the
computational cost because of the need to solve two
polarization equations at each time step. Recently, analytical
derivatives associated with a simple scaling of the polar-
izabilities and multipoles have been introduced.49 Here, we
resorted to a more general formulation relying on the
variational formulation of the many-body term and the
Hellman−Feynman theorem: Epol(r, λ) = Epol(r, λ, μ(r, λ)) and

E E E Ed

d
pol pol pol pol= + =

because of the minimum conditions on the induced dipoles.
Note that this formulation still holds for other many-body
terms with similar variational formulation as is the case for
fluctuating charges,50 continuum solvation models,51 or QM−
MM.52,53 Further development of the gradients used in this
work using particle mesh Ewald is given in the Technical
Appendix.
In the following section, we will first provide a brief overview

of the general binding modes of the 11 ligands in the BRD4
and Benzamidine−Trypsin system. We will then focus on the
orientation of the Asn140 residue of BRD4, a key residue that
directly interacts with the ligands in both the Apo and Holo
states, highlighting any significant differences. Finally, we
examine the binding affinities and correlate these findings with
the experimental values.
As depicted in Figure 1c, for BRD4, the 11 ligands are large,

flexible, drug-like molecules, some of which are charged
(ligands 1 and 4). These characteristics make them an ideal set
for evaluating the performance of the new method. All ligands
target a common binding site. Asparagine (Asn140), located
within the BC loop binding pocket (Figure 1a), is the most
critical residue, which interacts directly with the ligands. The
side chain of Asn140 consists of an amide group (−CONH2)
attached to a Cβ, which is itself connected to the Cα of the
backbone via rotatable bonds.
The 100 ns plain MD simulations for all ligands (except

ligand 11, for which 180 ns was run) show that, in the Holo
state, only one rotamer is favorable due to the formation of salt
bridges between the ligands and the Asn140 residue (Figure
1b). However, in the Apo state, both rotamer states can be
present. To investigate this, we calculated the free energy
associated with the two rotamers in the Apo state using the
OPES method (see the Supporting Information for more
details). Figure 2 shows that the two rotamers are equally
favorable and that switching between them can happen
naturally.
In addition to Asn140, four conserved (polarizable) water

molecules54 in the binding site of BRD4 also play a crucial role
in stabilizing the ligands within the binding pocket, thereby
enhancing binding affinities. As illustrated in Figure 1a, one of

Figure 2. Free energy surfaces (FES) of the χ2 dihedral angle for the
Asn140 residue obtained from plain OPES simulations, starting the
Apo structure (PDB ID 4LYI). Two different rotamers of Asn140
corresponding to each minimum are represented. The protein is
depicted in a cartoon representation in yellow, while Asn140 is shown
as a stick representation. χ2 is the torsion angle between nitrogen and
carbonyl carbon of the amide group. The transparent regions indicate
the associated errors of the FES, calculated over block analysis.
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these water molecules forms a bridge between the Tyr97
residue and the ligand (except for ligand 4). To preserve this
stabilization, the X-ray water molecules were retained in the
binding pocket during system preparation, as they contribute
to a hydrogen-bonding network involving the three other
conserved water molecules and the protein.
The Benzamidine−Trypsin complex (Figure 1d) serves as

another ideal case to evaluate the performance of the Lambda-
ABF-OPES on a different target.
Using the equilibrated structures for both targets, we carried

out absolute binding free energy calculations employing the
novel Lambda-ABF-OPES method. The correlation plot
between experimental values and calculated results of BRD4
is shown in Figure 3a and reported in Table 1.
We observe a strong correlation between the experimental

and calculated results, with a Pearson’s correlation coefficient
(Pearson’s r) of 0.81. The analysis yielded a root-mean-square
error (RMSE) of 1.1 kcal/mol and a mean absolute error
(MAE) of 0.9 kcal/mol. These results are consistent with

experimental data (see Figure 3a) and align well with those
reported in ref 40 (see Figure 3b). For ligand 6, however, our
obtained result aligned better with the experimental values.
The key advantage of this method lies in its user-friendliness,
reduced computational resource requirements, and rapid
convergence. Compared to Lambda-ABF, the traditional
fixed Lambda approach,41 and the newly developed CV-
based approach,40 this method offers significantly improved
computational efficiency while maintaining high accuracy.
These attributes make it particularly well-suited for large-scale
or high-throughput applications.
For the Benzamidine−Trypsin complex, we obtained an

absolute binding free energy of −6.2 ± 0.65 kcal/mol. This
result is in excellent agreement with the experimental value of
−6.3 kcal/mol55,56 and the findings of Ansari et al.43 Moreover,
achieving the same converged result in a significantly shorter
simulation time further highlights the computational efficiency
of the Lambda-ABF-OPES method.

Figure 3. Experimental vs calculated ΔG values. (a) Calculated ΔG values and their associated errors represent the mean and standard error from
three independent repeats for each ligand. The dark shaded region spans ±1 kcal/mol, while the lighter region spans ±2 kcal/mol. The color bar
indicates the absolute difference between experimental and computed values. Pearson’s r, RMSE, and MAE are 0.81, 1.10, and 0.90 kcal/mol,
respectively. (b) Comparison of calculated ΔG values from this work to those from ref 40.

Table 1. Summary of the BRD4 and Trypsin Binding Free Energy Results Using Lambda-ABF-OPESa

ns per walker

complex solvent

compound ΔGexp ΔGcalc ΔGcalc − ΔGexp PDB ELE VDW ELE VDW

L1−BRD4 −9.8 ± 0.157 −10.56 ± 0.46 −0.85 4OGI 0.9 22.5 1.9 3.5
L2−BRD4 −9.6 ± 0.158 −8.26 ± 0.22 1.34 3MXF 2.2 19.2 0.9 2.2
L3−BRD4 −9.0 ± 0.159 −9.19 ± 0.30 −0.19 4MR3 2.6 17.8 0.4 2.4
L4−BRD4 −8.9 ± 0.157 −10.13 ± 0.15 −1.23 4OGJ 2.6 24.8 2.7 3.5
L5−BRD4 −8.8 ± 0.160 −8.27 ± 0.52 0.09 4J0R 2.1 15.9 0.9 2.7
L6−BRD4 −8.2 ± 0.161 −6.75 ± 0.30 1.45 3U5L 0.6 20.2 0.5 3.5
L7−BRD4 −7.8 ± 0.159 −6.42 ± 0.65 1.38 4MR4 0.9 20.0 1.4 3.4
L8−BRD4 −7.4 ± 0.161 −5.46 ± 0.53 1.94 3U5J 0.7 20.7 0.4 2.5
L9−BRD4 −7.3 ± 0.160 −7.57 ± 0.12 −0.27 3SVG 1.5 17.4 0.5 2.7
L10−BRD4 −6.3 ± 0.062 −7.05 ± 0.33 −0.75 4HBV 1.8 14.8 0.2 1.6
L11−BRD4 −5.663 −4.98 ± 0.58 0.62 model 0.2 10.7 0.2 1.9
Benzamidine−Trypsin −6.3655,56 −6.2 ± 0.65 0.16 3ATL 0.98 17.0 0.34 3.5

aThe experimental (ΔGexp) and calculated (ΔGcalc) values for each ligand are presented. All ΔG values are reported in kcal/mol. Calculated ΔGcalc
and associated errors represent the mean and standard error of the mean, derived from three replicates for each ligand. The PDB files used as input
are listed. The average convergence time over three replicas for each ELE and VDW leg in the complex and solvent phases is reported in
nanoseconds per replica. The total simulation time for the ELE and VDW legs in the complex phase is 5 and 30 ns per walker, respectively. For the
solvent phase, each leg is run for 5 ns per walker.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.5c00683
J. Phys. Chem. Lett. 2025, 16, 4626−4634

4630

https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00683?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00683?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00683?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00683?fig=fig3&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.5c00683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


To evaluate the robustness of the method, we performed a
detailed convergence test by analyzing the convergence time of
ΔG and comparing the results to those obtained by using
Lambda-ABF alone. The convergence time was defined as the
point from which all subsequent data points remain within the
specified tolerance of the mean, providing a clear metric for
determining when the simulation data stabilizes. A tolerance of
0.2 kcal/mol was used in this analysis, representing just 20% of
the commonly accepted convergence threshold for binding free
energy calculations. This strict criterion underscores the
precision and reliability of the method.
Figure 4 illustrates an example of a ΔG convergence plot

over time for the ELE and VDW legs of the ligand 8−BRD4
complex phase using the Lambda-ABF and Lambda-ABF-
OPES methods in a single replica (see Figures S15−S19 of the
Supporting Information for additional comparisons). In this
case, the acceleration in convergence time is a factor of 9 for
ELE and 4 for VDW. When different replicas are considered,
the convergence speedup for ELE ranges from 5 to 9 times,
while for VDW, it ranges from 3 to 5 times.
The convergence analysis results for all ligands using

Lambda-ABF-OPES are summarized in Table 1. The average
convergence time for the complex phase was less than 3 ns for
the ELE leg and approximately 20 ns for the VDW leg,
highlighting the rapid stabilization of ΔG in these components.
In the solvent phase, the ELE leg showed convergence for most
ligands within 1−2 ns or less, while the VDW leg converged
within 2−3 ns. These results demonstrate a marked improve-
ment in convergence speed compared to other currently used

methods, which typically requires significantly longer simu-
lation times to achieve comparable stability.39−41

In practical applications, such efficiency gains can translate
into a substantial reduction in computational costs, enabling
more extensive exploration of chemical space or greater
statistical sampling within the same resource constraints. The
combination of simplicity, accuracy, and computational
efficiency makes this approach a promising tool for the drug
discovery field.
Accurately predicting the binding affinity between small

molecules and their target proteins remains a critical challenge
in drug discovery, with far-reaching implications for the speed
and efficiency of therapeutic development.
In this study, we introduced a new hybrid approach that

combines Lambda-ABF with an exploratory version of the
OPES method. This novel integration leverages the comple-
mentary strengths of ABF and OPESe to overcome critical
limitations in alchemical free energy calculations, including
inefficient exploration of configurational space and kinetic
trapping in energy landscapes. By application of biases to the
Lambda CV and incorporation of the AMOEBA polarizable
force field alongside DBC restraints, our method achieves
unprecedented levels of sampling efficiency, up to 9 times
faster than the original Lambda-ABF technique.
Our application of this hybrid method to a diverse set of 11

drug-like molecules targeting BRD4 bromodomains and the
Benzamidine−Trypsin complex yielded close alignment
between our computational results and experimental data.
Importantly, this was achieved while using the highly accurate
AMOEBA polarizable force field, demonstrating the feasibility

Figure 4. ΔG convergence comparison between Lambda-ABF and Lambda-ABF-OPES. The ΔG over time for the (a and b) ELE leg and (c and d)
VDW leg of the ligand 8-BRD4 complex phase, calculated using Lambda-ABF and Lambda-ABF-OPES methods, respectively. Each panel includes
a zoomed-in plot of the converged area.
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of this approach for real-world drug discovery applications.
This approach can be naturally extended to neural network
methodologies, including machine learning interatomic
potential (MLIP)64,65 and foundation models,66,67 whose
additional computational cost for free energy computations
compared to FFs has limited to date their use in production.
By integration of state-of-the-art methodologies and the

harnessing of their synergistic advantages, this work provides a
robust tool for the rapid and reliable advancement of novel
therapeutics. Although applied in an alchemical context in this
study, this methodology shows promise for broader applic-
ability within enhanced sampling techniques and lays the
groundwork for its integration into a more general framework,
which we plan to further investigate in future work.

■ TECHNICAL APPENDIX
Analytical Lambda Derivatives for the Polarization Energy Using
Particle Mesh Ewald. A simple interpolation of polarization
between the end states reads

E E Er r r( , ) ( , 1) (1 ) ( , 0)pol pol pol= +

so that

E
E Er r r( , ) ( , 1) ( , 0)

pol
pol pol=

which requires two resolutions of the polarization equations
per time step as stated in the main text. Alternatively, let us
consider the polarization energy associated to a scaling of the
polarizabilities and the permanent multipoles of the
“alchemical” part of the system, with the complete system
being made of N atoms

E r r T r E r( , , ( , ))
1
2

( , ) ( , )pol =

where T is the (3N, 3N) polarization matrix and E is the 3N
vector of the permanent electric fields on the polarizable sites.
The Hellman−Feynman theorem yields

dE

d
T E1

2
pol =

The derivative contribution due to T is trivial to compute
because it is only associated to its diagonal part α−1(λ), with α
collecting the diagonal polarizability tensors. In the context of
periodic boundary conditions computed with particle mesh
Ewald, the second term can be separated in three given the

various components of E E E Ereal self recip= + + . The first
two terms can be directly computed. If only fixed charge is
used (and no permanent multipoles), then the last term can be
reformulated as

E Q V Q V( ( )) ( ( ) ( )) ( ( )) ( )recip recip recip= =

where Q(λ) is the vector (of size N) containing the permanent
charges and Vrecip is the vector of the same size containing the
reciprocal potential due to the induced dipoles. This potential
is readily available to compute the permanent polarization
energy, and Q( ) is trivial to compute. The same reasoning is
naturally extended to permanent multipoles of higher order by
involving derivatives of Vrecip(μ) that are always available to
compute the permanent polarization energy.
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